Publication record details

Title Environmental baseline monitoring : Phase III final report (2017-2018)
Ref no OR/18/026
Author Ward, R.S.; Smedley, P.L.; Allen, G.; Baptie, B.J.; Cave, M.R.; Daraktchieva, Z.; Fisher, R.; Hawthorn, D.E.; Jones, D.G; Lewis, A.; Lowry, D.; Luckett, R.; Marchant, B.P.; Purvis, R.M.; Wilde, S.; Bradley, E.J.; Bowes, M.J.; Coleman, M.; Horleston, A.; Howarth, C.H.; Fisher, R.; Lanoiselle, M.; Lister, T.R.; Miller, C.A.; Milne, C.J.; Pitt, J.; Rivett, M.O.; Barkwith, A.K.A.P.; Wasikiewicz, J.M.; British Geological Survey; University of Manchester; Public Health England; University of York.; Royal Holloway, University of London; University of Bristol; GroundH2O Plus
Year of publication 2018
Abstract High-quality environmental baseline monitoring data are being collected in areas around two proposed shale gas sites near Kirby Misperton, North Yorkshire and Little Plumpton Lancashire. Monitoring has now been on-going for over two years and has produced an internationally unique data set that will allow any future changes that arise from industrial activities at either or both shale gas sites to be detected and characterised, as well as providing a significant resource for future research. The monitoring includes: water quality, air quality, seismicity, ground motion, soil gas and radon in air. This report presents the results of monitoring in the Vale of Pickering, within which the Kirby Misperton shale gas site (KM8) is located, for the period April 2017-March 2018. It also includes the results of atmospheric composition measurements made near the Little Plumpton (Preston New Road) site. Earlier results and other monitoring in Lancashire are reported elsewhere and can be accessed from the British Geological Survey's website1. As well as providing valuable insight into the importance of establishing robust information on the conditions before shale gas operations start, it also highlights the challenges in establishing effective monitoring and producing reliable results. For groundwater, this includes the importance of: developing and flushing newly installed boreholes; the spatial variation in water quality and; the selection of monitoring and measuring techniques. Having two years of data has allowed comparison between years. The preliminary analysis reported here has shown that sample populations were not significantly different between the two years. This is directly relevant to the duration of monitoring required by legislation, with the evidence supporting a baseline monitoring period of at least 12 months before any site operations start. The seismic monitoring network installed for measuring background seismicity has operated successfully throughout the reporting period. All but one station show levels of data completeness over 90% which represents a high-quality dataset. There has been no significant change in recorded noise levels at any of the stations in the network. This combined with instrument performance means the network is capable of detecting seismic events with magnitudes of 0.5 ML or less around Kirby Misperton. The monitoring has detected successfully a number of earthquakes around both the Vale of Pickering and the Fylde peninsula. However, all of these are at some distance from the shale gas sites. The Vale of Pickering network has also detected a number of other seismic events that have been attributed to quarry blasts. The magnitudes of these events range from 0.7 ML to 1.6 ML. We have also developed and applied a new magnitude scale to correct for overestimation of magnitudes at small epicentral distances. This results in a significant reduction of the magnitudes of quarry blasts in the Vale of Pickering by over 0.5 magnitude units in some cases. The variance in the magnitude estimates is also slightly reduced. This issue is critical for correct estimation of the magnitudes of any earthquakes that might be induced by hydraulic fracturing. The greenhouse gas monitoring continues to reinforce the conclusion that a baseline at one location is not applicable to other locations. However, the consistency of the baseline measurements (and baseline variability within each year) at both sites clearly suggests that 12 months of baseline monitoring is sufficient to establish a meaningful climatology to compare with analogous climatologies during the operational lifetime of the shale gas sites. Twelve months of data allow differentiation of local and long-range sources of greenhouse gases. At both sites, local (<10 km) sources dominate the contribution to statistically elevated concentration observations.
Publisher British Geological Survey
Place of publication Keyworth
Series Open Reports
View publication View online | View on ENVIROLIB | View on NORA